可观测性不是一个新鲜的名词,主要是指通过分析数字化应用系统的指标(Metrics)、链路(Traces)、日志(Logs)等数据,构建出完整的态势观测模型,从而实现快速的威胁发现和故障诊断。在许多情况下,可观察性会被错误理解成是“系统监控”的同义词,但随着数字化应用的深入,特别是随着云原生技术的发展,基于容器和微服务化的应用规模更加庞大,复杂的云上环境以及应用系统的分布性、复杂性、动态性,使得故障定界和检测分析非常困难,而可观测性无疑是降低这种难度的有效手段之一。因此,有更多企业发现部署可观察性产品的能力和价值。
目前,研究机构Gartner已将应用可观测性列为“2023年十大战略技术趋势”之一。安全研究人员表示,成功实现可观测性的企业机构,会在数字化业务开展中建立竞争优势,企业需要找到合适的工具并尽快部署使用。本文收集整理了8款主流的可观察性工具,并对其应用特性、不足和典型应用场景进行了分析,可为企业组织应用选型提供参考。
1. Prometheus
Prometheus是一款开源工具,广泛用于云原生环境中的可观察性获取。它可以收集和存储时间序列数据,并提供可视化工具来分析这些数据。
关键特性与不足:
主要应用场景:
传送门:
https://prometheus.io/
2. Grafana
Grafana是一个开源工具,主要用于对数据的可视化和监控。它允许用户轻松地创建和共享交互式仪表板,对来自不同来源的数据进行可视化分析。
关键特性与不足:
主要应用场景:
传送门:
https://grafana.com/
3. ELK堆栈
ELK堆栈是一款流行的开源可观察性解决方案,有助于运营人员更好地管理日志和分析数据。它由三个组件组成:Elasticsearch、Logstash和Kibana。
Elasticsearch是一个分布式搜索和分析引擎,可以处理大量结构化和非结构化数据,使用户能够存储、索引和搜索大量数据;Logstash是一个数据收集和处理管道,允许用户收集、处理和丰富来自许多源(如日志文件)的数据;Kibana是一个数据可视化和探索工具,允许用户基于Elasticsearch中的数据创建交互式仪表板和可视化。
关键特性与不足:
主要应用场景:
传送门:
Elasticsearch:https://www.elastic.co/elasticsearch/
Logstash:https://www.elastic.co/logstash/
Kibana:https://www.elastic.co/kibana/
4. InfluxDB 和Telegraf组合
InfluxDB和Telegraf都是开源版的可观察性工具,它们的时间序列数据存储和监控功能很受企业用户的欢迎。其中,InfluxDB是一个时间序列数据库,它使用类似sql的查询语言存储和查询大量时间序列数据;而Telegraf则是一款性能出色的数据收集代理,它可以支持各种数据源,收集各种指标和事件信息,并将其发送给多个提前设置的接收器,比如InfluxDB等。
关键特性与不足:
主要应用场景:
传送门:
InfluxDB:
https://www.influxdata.com/
Telegraf:
https://www.influxdata.com/time-series-platform/telegraf/
5. Datadog
Datadog是一款基于云的可观察性监控和分析平台,目前已被广泛用于深入了解分布式系统的运行状况和性能,以便在风险真实发生前排除问题。
关键特性与不足:
主要应用场景:
传送门:
https://www.datadoghq.com/
6. New Relic
New Relic也是一款基于云的监控和分析平台,允许用户监控分布式环境中的程序运行状态。它使用“New Relic Edge”服务进行分布式跟踪,可以实现几乎100%的应用程序跟踪监测。
关键特性与不足:
主要应用场景:
传送门:
https://newrelic.com/
7. AppDynamics
AppDynamics是一款应用广泛的可观察性监控和分析平台,不仅允许用户对各种应用程序的每个组件进行跟踪监测,同时还提供了根本原因分析,以确定可能影响应用程序性能的潜在问题。
关键特性与不足:
主要应用场景:
传送门:
https://www.appdynamics.com/
8. Helios
Helios是一款为系统开发人员提供可观察性的解决方案,提供了对应用程序流程的可操作性洞察能力。它整合了OpenTelemetry的上下文连接框架,可以提供跨微服务、无服务器应用、数据库和第三方API的可见性。
关键特性与不足:
主要应用场景:
传送门:
https://app.gethelios.dev/
参考链接:
https://dzone.com/articles/11-observability-tools-you-should-know-in-2023
来源:安全牛